Sequentially Cohen-macaulay Monomial Ideals of Embedding Dimension Four
نویسندگان
چکیده
Let I be a monomial ideal of the polynomial ring S = K[x1, . . . , x4] over a field K. Then S/I is sequentially Cohen-Macaulay if and only if S/I is pretty clean. In particular, if S/I is sequentially Cohen-Macaulay then I is a Stanley ideal.
منابع مشابه
A characterization of shellable and sequentially Cohen-Macaulay
We consider a class of hypergraphs called hypercycles and we show that a hypercycle $C_n^{d,alpha}$ is shellable or sequentially the Cohen--Macaulay if and only if $nin{3,5}$. Also, we characterize Cohen--Macaulay hypercycles. These results are hypergraph versions of results proved for cycles in graphs.
متن کاملHilbert Functions of Gorenstein Monomial Curves
It is a conjecture due to M. E. Rossi that the Hilbert function of a one-dimensional Gorenstein local ring is non-decreasing. In this article, we show that the Hilbert function is non-decreasing for local Gorenstein rings with embedding dimension four associated to monomial curves, under some arithmetic assumptions on the generators of their defining ideals in the noncomplete intersection case....
متن کاملIntegral Closures of Cohen-macaulay Monomial Ideals
The purpose of this paper is to present a family of CohenMacaulay monomial ideals such that their integral closures have embedded components and hence are not Cohen-Macaulay.
متن کاملCOHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
متن کاملCombinatorial Characterizations of Generalized Cohen-macaulay Monomial Ideals
We give a generalization of Hochster’s formula for local cohomologies of square-free monomial ideals to monomial ideals, which are not necessarily square-free. Using this formula, we give combinatorial characterizations of generalized Cohen-Macaulay monomial ideals. We also give other applications of the generalized Hochster’s formula.
متن کامل